Different proteolipid protein mutants exhibit unique metabolic defects
نویسندگان
چکیده
PMD (Pelizaeus-Merzbacher disease), a CNS (central nervous system) disease characterized by shortened lifespan and severe neural dysfunction, is caused by mutations of the PLP1 (X-linked myelin proteolipid protein) gene. The majority of human PLP1 mutations are caused by duplications; almost all others are caused by missense mutations. The cellular events leading to the phenotype are unknown. The same mutations in non-humans make them ideal models to study the mechanisms that cause neurological sequelae. In the present study we show that mice with Plp1 duplications (Plp1tg) have major mitochondrial deficits with a 50% reduction in ATP, a drastically reduced mitochondrial membrane potential and increased numbers of mitochondria. In contrast, the jp (jimpy) mouse with a Plp1 missense mutation exhibits normal mitochondrial function. We show that PLP in the Plp1tg mice and in Plp1-transfected cells is targeted to mitochondria. PLP has motifs permissive for insertion into mitochondria and deletions near its N-terminus prevent its co-localization to mitochondria. These novel data show that Plp1 missense mutations and duplications of the native Plp1 gene initiate uniquely different cellular responses.
منابع مشابه
TITLE: Different Proteolipid Protein Mutants Exhibit Unique Metabolic Defects
LIST OF ABBREVIATIONS: AIF, apoptosis inducing factor; CcO, cytochrome c oxidase; • • m, mitochondrial membrane potential; ER, endoplasmic reticulum; EM, electron microscopy; IMM, inner mitochondrial membrane; jp, jimpy mouse; mtCK, mitochondrial creatine kinase; Olg, oligodendrocyte; OMM, outer mitochondrial membrane; PARP, poly (ADP-ribose) polymerase; Plp1, X-linked myelin proteolipid protei...
متن کاملHyperactive Neuroendocrine Secretion Causes Size, Feeding, and Metabolic Defects of C. elegans Bardet-Biedl Syndrome Mutants
Bardet-Biedl syndrome, BBS, is a rare autosomal recessive disorder with clinical presentations including polydactyly, retinopathy, hyperphagia, obesity, short stature, cognitive impairment, and developmental delays. Disruptions of BBS proteins in a variety of organisms impair cilia formation and function and the multi-organ defects of BBS have been attributed to deficiencies in various cilia-as...
متن کاملMutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses
Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of ...
متن کاملSAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast
Mutations in the SAC1 gene exhibit allele-specific genetic interactions with yeast actin structural gene defects and effect a bypass of the cellular requirement for the yeast phosphatidylinositol/phosphatidylcholine transfer protein (SEC14p), a protein whose function is essential for sustained Golgi secretory function. We report that SAC1p is an integral membrane protein that localizes to the y...
متن کاملDetecting Functional Groups of Arabidopsis Mutants by Metabolic Profiling and Evaluation of Pleiotropic Responses
Metabolic profiles and fingerprints of Arabidopsis thaliana plants with various defects in plastidic sugar metabolism or photosynthesis were analyzed to elucidate if the genetic mutations can be traced by comparing their metabolic status. Using a platform of chromatographic and spectrometric tools data from untargeted full MS scans as well as from selected metabolites including major carbohydra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2009